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Webly Supervised Image Classification

What?

« Utilizes online search engines to collect billions of web images and labels them
with the query name (searching keyword)

Why?
« Human annotations are extremely time-consuming and expensive
« Can pre-train general vision models directly from large-scale web data
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Webly Supervised Image Classification

Challenge: Semantic label noise
» Areal-world problem that most images of a category deviate from its true

semantic concept
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Method

Insight 1: Metadata
» Text metadata crawled along with web image can reflect image semantics
« Can handle severe semantic label noise problem automatically
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Method

Insight 2: Visual-semantic Graph (VSGraph)
» Features that extracted from CNN models are clustered by semantics
» Clean samples can propagate correct semantic on VSGraph

drumstick

Web label ‘Drumstick’ shows representative images corresponding to 5 regions of interest. We
observe that similar semantics are clustered and different semantics are separated.
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Experimental Results

Performance: w/ Graph Enhancement > w/o Graph Enhancement > Model Confidence
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Anchors by Model Confidence

(c) Selected Anchors for Class ‘Tiger Cat’



Experimental Results

Our method achieves the SOTA performance on WebVision-1000

Table 2: The state-of-the-art results on WebVision-1000 Table 3: Results on NUS-81-Web with noisy web labels for
training. K = 3 is used for calculating C-F1 and O-F1

WebVision ImageNet

Method Backbone Top-1 Top-5 Top-1 Top-5 Method C-F1 O-F1 mAP
MentorNet [17] InceptionResNetV2 72.60 88.90 64.20 84.80 Pretrained model 37.51 39.59 4394
CleanNet [24] ResNet50 70.31 87.77 63.42 84.59 Finetune by p. only 37.62 39.15 43.99
CurriculumNet [12] InceptionV2 72.10 89.20 64.80 84.90 Finetune by p» 38.58 40.16 44.83
Multimodal [36]  InceptionV3 73.15 89.73 - -

Pretrained model = ResNet50 74.25 89.84 68.28 86.23

Finetune by p. only ResNet50 75.15 89.93 69.07 86.76

Finetune by p ResNet50 75.48 90.15 69.42 87.29




Summary

- We highlight two understudied but critical factors in webly supervised learning:
semantic label noise and text metadata

- Visual Semantic Graph: the webly pretrained CNN can provide reasonable visual
feature space where similar images cluster themselves

- We design an effective and automatic label corrector by using clean anchor set

with GNN-based label propagation
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